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Abstract—Cognitive Radio Networks allow unlicensed users to
opportunistically access the licensed spectrum without causing
disruptive interference to the primary users (PUs). One of the
main challenges in CRNs is the ability to detect PU transmissions.
Recent works have suggested the use of secondary user (SU)
cooperation over individual sensing to improve sensing accuracy.
In this paper, we consider a CRN consisting of a single PU
and multiple SUs to study the problem of maximizing the total
expected system throughput. We propose a Bayesian decisionrule
based algorithm to solve the problem optimally with a constant
time complexity. To prioritize PU transmissions, we re-formulate
the throughput maximization problem by adding a constraint
on the PU throughput. The constrained optimization problemis
shown to be NP-hard and solved via a greedy algorithm with
pseudo-polynomial time complexity that achieves strictlygreater
than 1/2 of the optimal solution. We also investigate the case for
which a constraint is put on the sensing time overhead, which
limits the number of SUs that can participate in cooperative
sensing. We reveal that the system throughput is monotonic over
the number of SUs chosen for sensing. We illustrate the efficacy of
the performance of our algorithms via a numerical investigation.

I. I NTRODUCTION

Cognitive radio networks (CRNs) have been proposed to
address the spectrum scarcity problem by allowing unlicensed
users (secondary users, SUs) to access licensed spectrum on
the condition of not disrupting the communication of licensed
users (primary users, PUs). To this end, SUs sense licensed
channels to detect the primary user (PU) activities and find
the underutilized “white spaces”. FCC has opened the TV
bands for unlicensed access [2]1, and IEEE has formed a
working group (IEEE 802.22 [7]) to regulate the unlicensed
access without interference. Many other organizations are
also making efforts on the spectrum access policy in the
CRN environment, e.g., DARPA’s ‘Next Generation’ (XG)
program [17] mandates cognitive radios to sense signals and
prevent interference to existing military and civilian radio
systems. To avoid the interference to PUs, sensing becomes
an indispensable part of CRN design.

Sensing can be performed via several methods, including
energy detection, cyclostationary feature detection, andcom-
pressed sensing [8]. Energy detection is a simple method
and requires no a priori knowledge of PU signals [21]. Its

1The recent FCC ruling requires the use of central TV Band usage databases
to verify spectral availability. While respecting this ruling, our work explores
local cooperative methods to improve sensing accuracy withthe potential
outcome of relieving this burdensome requirement.

main disadvantage is its decreased accuracy in face of fading,
shadowing, and unknown noise power profiles. For instance,
if an SU suffers from shadowing or heavy fading, the sensed
signal tends to be weak while the PU is transmitting, leading
to incorrect decisions. To address these problems while main-
taining sensing simplicity, cooperative sensing schemes that
fuse the sensing results of multiple SUs have been proposed
[5][13][14].

Cooperative sensing overcomes shortcomings of individual
sensing results by jointly processing observations. SUs ina
locality report their individual sensing results, which are then
used in a predefined decision rule to optimize an objective
function. Examples of such functions include maximizing
sensing accuracy (generally, a function of false alarm proba-
bility and mis-detection probability) or maximizing the system
throughput. Aside from maximizing sensing accuracy related
metrics, cooperative sensing schemes are also designed to
estimate the maximum transmit power for SUs so that they
do not cause disruptive interference to PUs [11]. On the other
hand, cooperative sensing incurs additional sensing delayviz
a viz individual sensing.

Three main categories of decision rules have been identified
in [8]: Soft Combining, Quantized Soft Combining,andHard
Combining. In the first two categories, the sensing results are
sent to the fusion center with little or no processing, while
in the last one, binary local decisions are usually reported.
Similar to sensor networks, linear fusion rules are widely
applied to achieve a cooperative decision, such as AND, OR
and majority rules [14]. In addition, a more advanced fusion
technique that utilizes statistical knowledge [20] has been
devised to capture the correlation between SUs in cooperative
sensing. However, the resulting algorithm is suboptimal and
its approximation factor is unknown. None of the above-
mentioned works identify optimal decision rules for general
decision structures and they require decision rules to assume
particular forms (e.g., linear) for optimality analysis.

In this paper, we design an optimal data fusion rule to (hard)
combining of the reported sensing result. More specifically, we
aim to maximize the system throughput in a CRN composed
of a single PU (i.e., single channel) and several SUs. While the
target system is a simplified one, it is helpful in revealing the
challenges associated with the design of optimal fusion rules.
Moreover, the resulting algorithms can easily be generalized
to more complex systems comprised of multiple channels,
where sensing decisions are made per channel. Our main
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contributions can be summarized as follows:
• In contrast to previous works that restrict the class of

fusion rules, we propose a Bayesian decision rule based
algorithm to solve the throughput maximization problem
optimally with constant time complexity.

• To guarantee resources for the PU, we re-formulate the
problem by adding a constraint on the PU throughput.
This constrained problem is shown to be NP-hard by
reducing the classical partition problem [6] to it. A
greedy algorithm is obtained with pseudo-polynomial
time complexity. This approximation algorithm is ana-
lytically shown to achieve strictly greater than1/2 of the
optimal solution.

• We investigate systems where limited sensing overhead
is allowed, i.e., the number of sensing SUs is restricted.
Our theoretical results show that the performance of
cooperative sensing is monotonic over the number of SUs
used for sensing. However, the characterization of the
upper bound on the required number of sensing nodes
remains elusive.

The paper is organized as follows: Related work is presented
in Section II. In Section III, the system model is introduced.
The system throughput maximization problem is formulated
in Section IV, and solved optimally via Bayesian decision
rule. In Section V, the constrained maximization problem
is formulated, which is shown to be NP-hard. A pseudo-
polynomial time greedy algorithm is proposed with an ap-
proximation factor strictly greater than1/2. Another direction
is considered in Section VI where the system throughput is
maximized subject to a constraint on the number of sensing
SUs used. In Section VII, numerical results are presented for
the performance of our algorithms. The paper is concluded in
Section VIII.

II. RELATED WORK

Cooperative sensing solutions have been investigated in
recent years. They rely on multiple SUs to exchange sensing
results or a central controller to collect the sensing results from
SUs. The network is usually divided into clusters and each
cluster head makes the decision on the channel occupancy.
Collaborations among SUs have been shown to improve the
efficiency of spectrum access and allow the relaxation of
constraints at individual SUs [3][24]. One branch of the papers
in cooperative sensing assume that the length of sensing time
at individual SUs is proportional to the sensing accuracy.
However, longer sensing time decreases the transmission time.
The trade-off is called thesensing efficiencyproblem and
is discussed in [10] and [12]. In our work, we assume the
observation time at each SU is fixed so that the individual
sensing accuracy does not depend on it. We focus on the
optimal decision rule based on the sensing results collected.

Decision rules so far mainly focus on AND, OR, majority
rules and other linear rules. Zhang et. al. [25] show that theop-
timal fusion rule to minimize the cooperative sensing errorrate
is the half-voting rule in most cases. They show that AND or
OR rules are optimal only in rare cases. However, other rules
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Fig. 1. System model of an SU network overlayed with a PU network.

with more complicated forms have not been considered in [25].
Based on these observations, a fast spectrum sensing algorithm
is proposed for a large network where not all SUs are required
for sensing while satisfying a given error bound. However, the
optimal number of sensing nodes and the complexity of this
problem have not been discussed. In [14], the SU throughput
is maximized subject to sufficient protection provided to PUs.
The optimal k-out-of-N fusion rule is determined and the
sensing/throughput trade-off is also analyzed. As in [25],
no fusion rules of general forms are considered. Thus, the
optimization is restricted to a small fusion rule domain. Shahid
et. al. [18] consider the spatial variation of SUs and the fusion
rule is a weighted combination of SU observations. The weight
depends on the received power and path loss at each SU.
Though more advanced than AND, OR, and majority rules,
the weighted form is restricted to the linear function domain.
In [4], optimal multi-channel cooperative sensing algorithms
are considered to maximize the SU throughput subject to per
channel detection probability constraints. The resultingnon-
convex problem is solved by an iterative algorithm. Compared
to [4], our work focuses on the maximization of the system
throughput, including the PUs and SUs. Although we only
consider a single-channel network, which is a simplification
made on the model, our decision algorithms can be applied
for each channel individually. Moreover, a soft decision rule
is considered in [4], which requires significant amount of data
to be transmitted to the coordinator while our hard decision
rule requires only one bit sent from each SU.

III. SYSTEM MODEL

We consider a time-slotted cognitive radio network in which
a PU network, consisting of a PU base station (PU-BS) and
PU receivers, co-exists in the same area with an SU base
station (SU-BS) andM SUs (Figure 1). We focus on the PU
transmissions over a particular channel. We consider uplink
part for the SU system, i.e., only one SU can be active and
transmit to the SU-BS at any given time. Some PU receivers
may lie in the interference range of SUs such as PU1 in
Figure 1. Any transmission from these SUs such as SUs1,
2, and 3 in Figure 1 may cause interference to those PU
receivers. We denote the set of SUs whose uplink transmission
causes interference to PU receivers byS and |S| = N
(M ≥ N ). They are indexed from1 to N . SUs outsideS can
use the channel to transmit at any time slot without causing
interference to the PUs.

SUs inS are close to the PU network and they may sense the
channel cooperatively to reduce the sensing errors. The sensing
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Fig. 2. Control slotTc and data slotTd.

results of individual SUs are assumed to be independent. LetB
represent the PU activity such thatB = 1 if PU is active, and
B = 0 otherwise. LetP if denote theprobability of a false
alarm for SU i, which is the probability that SUi senses
the PU to be active given that the PU is actually idle.P im
represents theprobability of mis-detection for SU i, which
is the probability that SUi senses the PU to be idle given that
the PU is actually active.

Cooperative Sensing: Multiple SUs are chosen to sense the
channel and the SU-BS predicts the PU activity by collecting
the sensing results from these SUs. We denote the set of SUs
that participate in the cooperative sensing asS0, where|S0| =
k. Note thatS0 ⊆ S. In the cooperative sensing model, we
assume the SU-BS collects sensing results from SUs inS0.

Cooperative Sensing Indicator: The observation of the
PU activity by SUi is denoted byoi. oi = 1 indicates that
SU i observes the PU to be active, whileoi = 0 indicates
that SU i observes the PU to be idle. In this paper, our
objective is to characterizeS0 and estimate the PU activity
based on observations fromS0 (called the decision rule). The
decision rule is denoted as a functionf : Ωk → Ω where
Ω = {0, 1}. The observations form a vectoro, whereo ∈ Ωk

while the decision is denoted byO where O ∈ Ω. The
false alarm probability of cooperative sensing is denoted by
P cf = P (O = 1|B = 0). The mis-detection probability of
cooperative sensing is denoted byP cm = P (O = 0|B = 1).
One time slot is divided into a control slotTc and a data slot
Td whereTc + Td = 1 (Figure 2). In the control slot, the
SU-BS collects sensing results fromS0 and notifies an SU
in S if the cooperative sensing result is “idle” (O = 0). If
the PU is active (mis-detection), the PU transmission will be
collided with the transmission from the SU. The lengthTc
of the control slot is regarded as the sensing overhead and
assumed to be constant throughout the paper. It means that a
fixed time period is allocated for cooperative sensing in each
slot.

The uplinks of SUs inS are assumed to have the same
capacity which is normalized to1. If the decision of the
cooperative sensing at the SU-BS is “idle”, the SU-BS notifies
one of the SUs inS (not limited to S0, the sensing set) to
transmit. We assume SUs inS are always backlogged. The
scheduling of the transmitting SUs is beyond the scope of
this paper. However, any work-conserving scheduling policy
operating on idle slots can be used together with the decision
rule to maximize the total system throughput. We letπ0 denote
the probability that the PU is idle and we assume that the prior
distribution of PU activity is acquired over time accurately.

TABLE I
NOTATION L IST

Symbol Meaning

M Total number of SUs in the secondary network

S Set of SUs which cause interference to PU receivers

N |S|

S0 Set of SUs that are chosen to sense the channel.S0 ⊆ S

k |S0|

P i
f False alarm probability of SUi

P i
m Mis-detection probability of SUi

P c
f False alarm probability of cooperative sensing

P c
m Mis-detection probability of cooperative sensing

Tc Control slot

Td Data slot

π0 Probability that the PU is idle

γ Average throughput of PUs in the interference range of a SU

Note that we do not restrict the PU activity to any specific
distribution except that it does not change within one time slot.
The average throughput of PUs whose transmission would be
interfered by SUs inS is denoted asγ. Table I summarizes
the notations used in the paper.

The SU communication follows a protocol with the follow-
ing outline:

1) SUs reportP im’s andP if ’s to SU-BS;
2) SU-BS determines the sensing setS0 and the decision

rule f based onP im, P if ’s and the optimization metric;
3) SU-BS notifies SUs inS0 with anACK and also assigns

each one of them aSEQ number for reporting sensing results;
4) SUs receiving anACK sense the channel and report the

results to SU-BS in the order ofSEQ;
5) SU-BS makes the decision of the PU activity based on

the sensing results andf and schedules an SU for transmission
if the decision is0 (PU idle).

IV. SYSTEM THROUGHPUTMAXIMIZATION

In this section, we formulate the cooperative sensing prob-
lem with the assumption thatS0 = S, that is, the sensing
results from all SUs inS are reported to SU-BS withinTc.
SUs outsideS can transmit without causing interference to the
PUs. Thus, their performance is independent of the choice of
the sensing set or the decision rule. Our goal is to maximize
the sum of the expected throughput of SUs inS and that of
the PUs whose transmission may be interfered by the SUs.
It is equivalent to maximizing the expected throughput of the
system with PU-SU co-existence.

A. Problem Formulation

GivenB = 0 (the PU is idle), the probability of a particular
observation vectoro occurring is

P (o|B = 0) =
∏

i∈S,oi=1

P if
∏

j∈S,oj=0

(1− P jf ). (1)

The sum of allP (o|B = 0)’s with f(o) = 0 is given as

P (O = 0|B = 0) =
∑

f(o)=0

P (o|B = 0). (2)
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Algorithm 1 Bayesian Decision Rule Based Algorithm for maximizing

the system throughput (giveno, decideO)

1: if (1 − Tc)π0
∏

oi=1
P i
f

∏

oj=0
(1− P

j
f
) ≥ γ

∏

oi=1
(1− P i

m)
∏

oj=0
P

j
m

then
2: O ← 0
3: else
4: O ← 1

Then, the false alarm probability of cooperative sensing is

P cf = 1− P (O = 0|B = 0) = 1−
∑

f(o)=0

P (o|B = 0). (3)

Likewise, givenB = 1 (the PU is active), the probability
of a particular observation vectoro occurring is

P (o|B = 1) =
∏

i∈S,oi=1

(1− P im)
∏

j∈S,oj=0

P jm. (4)

The sum of allP (o|B = 1)’s with f(o) = 1 is given as

P (O = 1|B = 1) =
∑

f(o)=1

P (o|B = 1). (5)

Then, the mis-detection probability of cooperative sensing
is
P cm = 1− P (O = 1|B = 1) = 1−

∑

f(o)=1

P (o|B = 1). (6)

Note that Equation (2) is the conditional probability that
SU-BS correctly identifies the PU activity when it is idle so
that one SU could transmit successfully; Equation (5) is the
conditional probability that SU-BS correctly detects the PU is
active so that no SU would transmit and the PU could transmit
successfully. Accordingly, the expected throughput of theSUs
can be represented by
(1− Tc)P (B = 0, O = 0) = (1− Tc)π0P (O = 0|B = 0)

= (1− Tc)π0
∑

f(o)=0

P (o|B = 0), (7)

since the uplinks of SUs inS are assumed to have capacity
1 and only one of them could be scheduled in each time slot.
The expected throughput of the PU can be represented by

γP (O = 1|B = 1) = γ
∑

f(o)=1

P (o|B = 1) (8)

sinceγ is the average throughput of the PU whose transmis-
sion would be interfered by SUs inS. The problem is then
formulated as follows:

Problem (A):

max
f

(1 − Tc)π0
∑

f(o)=0

P (o|B = 0) + γ
∑

f(o)=1

P (o|B = 1)

B. Optimal Solution with Bayesian Decision Rule

We show that Problem (A) can be converted to a Bayesian
Decision problem. Algorithm 1 is then proposed based on
Bayesian decision rule to minimize the posterior expected loss
[1] and it is of constant time complexity.

Problem (A) is equivalent to Problem (9) in terms of optimal
f .

max
f

L(B = 0, O = 1)



π0
∑

f(o)=1

P (o|B = 0)





+L(B = 1, O = 0)



(1− π0)
∑

f(o)=0

P (o|B = 1)



 , (9)

whereL(B,O) is the loss of decisionO based on observation
o, which is a negative number.L(B = 0, O = 1) = −(1−Tc)
andL(B = 1, O = 0) = − γ

1−π0

. Thus Equation (9) is the
posterior expected lossof decisionO (Definition 8 of Chapter
4.4 in [1]). Using the Bayesian decision rule, Problem (9)
can be solved optimally [1]: giveno, the decisionO = 1
if |L(B = 0, O = 1)|π0P (o|B = 0) < |L(B = 1, O =
0)|(1− π0)P (o|B = 1) andO = 0 otherwise. Algorithm 1 is
designed accordingly.

V. GUARANTEEING A TARGET PU THROUGHPUT

In this section, we investigate the maximum throughput
problem with a PU throughput constraint. With higher priority,
a minimum PU throughput is guaranteed in the problem
formulation. We first show that this constrained problem is
NP-hard by reducing the classical partition problem [6] to
it. Then a greedy approximation algorithm is proposed to
achieve strictly greater than1/2 of the optimal solution. The
complexity of the algorithm is shown to be pseudo-polynomial
by solving a two-dimensional dynamic programming problem.

A. Problem Formulation and Properties

We formulate the constrained optimization problem as fol-
lows:

Problem (B):

max
f

(1− Tc)π0
∑

f(o)=0

P (o|B = 0) + γ
∑

f(o)=1

P (o|B = 1)

s.t.
∑

f(o)=1

P (o|B = 1) ≥ α. (10)

Equation (10) is the constraint we put on Problem (B)
where the expected PU throughput must be no less than a
preset system-dependent threshold. It is equivalent to1 −
∑

f(o)=1

∏

i∈S,oi=1

(1− P im)
∏

j∈S,oj=0

P jm ≤ 1−α, where1−α is

the collision factor. This can be interpreted as the probability
that a PU transmission colliding with an SU transmission being
no greater than1 − α. Problem (B) maximizes the expected
system throughput given that the lowest PU throughput can be
met considering the high priority of the PU in cognitive radio
networks.

By observing the structure of Problem (B), we state
Lemma 5.1 that shows the optimal assignment of observations
with G(o) < H(o) whereG(o) = (1−Tc)π0P (o|B = 0) and
H(o) = γP (o|B = 1). We definef∗ as the optimal solution
to Problem (B).

Lemma 5.1:In the optimal solution to Problem (B), we
havef∗(o) = 1 for all G(o) < H(o).

Proof: (Prove by contradiction) Assume thatf∗(o) = 0
for someo whereG(o) < H(o). Moving it from O = 0 to
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Fig. 3. Assignment of observations with no constraint and the optimal
assignment for Problem (B).A + B + C is the optimal assignment with
no constraint whileA+ B′ + C is the optimal solution to Problem (B).

O = 1 increases
∑

f(o)=1

P (o|B = 1) so that this operation still

makes a feasible solution. Furthermore, the expected system
throughput increases consideringG(o) < H(o), which makes
a better solution than the current optimal one. It causes a
contradiction. Hence, we havef∗(o) = 1 for all G(o) < H(o)
in the optimal solution to Problem (B).

With the property of Lemma 5.1, we only need to decide
which observations withG(o) ≥ H(o) should be put in
O = 1 to solve Problem (B) optimally. We defineχ =
{o : G(o) ≥ H(o) andf∗(o) = 1}, which is the set of
observations that need to be moved toO = 1 in the optimal
solution; ψ = {o : G(o) ≥ H(o) andf∗(o) = 0}, which
is the set of observations that stay inO = 0 in the optimal
solution. Moreover, we defineA =

∑

o:G(o)<H(o)

H(o), which

is the contribution of observations withG(o) < H(o) in the
optimal solution;B =

∑

o∈χ
G(o), which is the contribution

of observations inχ when put inO = 0; B′ =
∑

o∈χ
H(o),

which is the contribution of observations inχ when put in
O = 1 (B ≥ B′); C =

∑

o∈ψ

G(o), which is the contribution

of observations inψ when put inO = 0; C′ =
∑

o∈ψ

H(o),

which is the contribution of observations inψ when put in
O = 1 (C ≥ C′). Then,A+B+C is the optimal solution to
Problem (B) without the PU throughput constraint;A+B′+C
is the optimal solution to Problem (B), which is no greater than
A+B+C. The optimal assignment is illustrated in Figure 3.

B. Proof of NP-hardness

We focus on identifying the hardness of deciding observa-
tions withG(o) ≥ H(o) that should be put inO = 1 in this
section. It is shown to be NP-hard by reducing the classical
partition problem [6] to the subproblem of it in Theorem 5.2.

Theorem 5.2:Problem (B) is NP-hard.
Proof: We first state the classical partition problem [6]

- Given N positive integers:y1, · · · , yN , is there a way to
have them partitioned into two equal-sized subsets that have
the same sum? For reduction, we construct an instance of
Problem (B) by setting(1 − Tc)π0 = γ, P im + P if < 1,
α = ǫ +

∑

o:G(o)<H(o)

H(o) with ǫ ≤ min
o:G(o)≥H(o)

H(o).

For this instance, putting anyo with G(o) ≥ H(o) to
O = 1 would make a feasible solution given that observations
with G(o) < H(o) have all been put inO = 1. Obvi-
ously, choosing the observation with minimum non-negative
G(o) − H(o) would be the optimal solution. Note that
G(o) −H(o) = 0 is equivalent tolog G(o)

H(o) = 0. By setting

Algorithm 2 Greedy Approximation Algorithm for Problem (B)

Input:N , Tc, π0, γ, α, P i
m , P i

f for all i

Output:f or “infeasible”

1: G(o)← (1− Tc)π0
∏

i∈S,oi=1
P i
f

∏

j∈S,oj=0
(1− P

j

f
) for all o

2: H(o)← γ
∏

i∈S,oi=1
(1 − P i

m)
∏

j∈S,oj=0
P

j
m for all o

3: U ←
∑

o

H(o)

4: if U < α× γ then
5: output “infeasible” and return
6: f(o)← 1 for all o, sum1←

∑

o:G(o)<H(o)

H(o)

7: if sum1 ≥ α× γ then
8: f(o) = 0 for all o with G(o) ≥ H(o) and return
9: Sorto’s with G(o) ≥ H(o) in non-increasing order ofG(o)

H(o)
and label

them from1 to l
10: sum2← 0
11: for i = 1 to l do
12: if sum2 +H(oi) > U − α× γ then break
13: sum2← sum2 +H(oi), f(oi)← 0

log
1−P i

f

P i
m

= − log
P i

f

1−P i
m

= yi for all i, we havelog G(o)
H(o) =

∑

oi=0,i=1,··· ,N

yi +
∑

oj=1,j=1,··· ,N

−yj . Now the instance be-

comes: givenN pairs of integers(y1,−y1), · · · , (yN ,−yN),
exactly one number should be chosen from each pair; with this
constraint, what is the minimum non-negative sum? The re-
duction from the partition problem to this instance of Problem
(B) can be done in polynomial time.

To verify the correctness of the reduction, we can check:
if the minimum non-negativeG(o) − H(o) is 0, that is, the
optimal solution of the instance is0, we can answer “Yes” to
the partition problem; if it is positive, we can answer “No”
to the partition problem. If Problem (B) can be solved in
polynomial time, then the partition problem can be solved in
polynomial time as well. The partition problem is well-known
to be NP-complete [6]. Assuming P6=NP, Problem (B) has
been proven to be NP-hard.

It has been shown in Theorem 5.2 that finding the obser-
vation with G(o) closest toH(o) from above is NP-hard.
Hence, it is unlikely to find an efficient algorithm to solve
Problem (B) optimally. We will focus on the approximation
algorithm design in Section V-C.

C. Greedy Approximation Algorithm

We propose a greedy algorithm (Algorithm 2) that initially
assigns all observations toO = 1 and then moves observations
with G(o) ≥ H(o) by G(o)

H(o) from the highest to lowest toO =
0 until the feasibility constraint of Problem (B) is violated. By
transforming Problem (B) into the Knapsack Problem [23],
we will show that the algorithm achieves strictly greater than
1/2 of the optimal solution for Problem (B), which isA +
B′ + C in Figure 3. Although the sum ofG(o) or H(o)
in the worst case has exponential number of terms, we will
design a pseudo-polynomial time algorithm in Section V-D
considering its combinatorial nature. Ignoring rounding errors,
the implementation calculates these sums accurately.

In Algorithm 2, observations are chosen byG(o)
H(o) from the

highest to the lowest and assigned toO = 0 after those with
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G(o) < H(o) are assigned toO = 1. Ties are broken by
putting observations with smallerH(o) in the front. In Line3,
U is assigned to be the sum of contributions of all observations
if put in O = 1 (A+B′+C′). In Lines4-5, whether a feasible
solution exists for the given input is checked by comparing
the extreme case where all observations are assigned toO = 1
with the thresholdα×γ. In Line 6, observations are initialized
toO = 1. Lines6-8 checks whether the feasibility constraint in
Problem (B) has been satisfied under the initial assignment.If
yes, observations withG(o) ≥ H(o) are assigned toO = 0 by
Bayesian decision rule. Lines9-13 searches for observations
with G(o) ≥ H(o) from the highestG(o)

H(o) to lowest until
sum2 + H(oi) ≤ U − α × γ is violated (Line12). Note
that

∑

o:f(o)=0

H(o) ≤ U − α × γ and
∑

o:f(o)=1

H(o) ≥ α ×

γ (feasibility constraint) are equivalent since
∑

o

H(o) = U .

f(o) of these observations are set to be0 (Line 13) in the
searching process. Next, we state Theorem 5.3 that gives the
approximation factor of Algorithm 2.

Theorem 5.3:Algorithm 2 achieves strictly greater than1/2
of the optimal solution to Problem (B).

Proof: Recall the following notations: A =
∑

o:G(o)<H(o)

H(o), B =
∑

o∈χ
G(o), B′ =

∑

o∈χ
H(o),

C =
∑

o∈ψ

G(o), C′ =
∑

o∈ψ

H(o), andW = A + B + C.

We defineU = A + B′ + C′ =
∑

o

H(o). Let APX be the

solution to Problem (B) output by Algorithm 2. LetOPT be
the optimal solution to Problem (B). Then, we have

OPT =W − (B −B′) (11)
= A+C+B′ = (A+B′+C′)+ (C−C′) = U +(C−C′).

Equation (11) holds by Figure 3 since moving observations
from O = 0 to O = 1 losesB −B′ in throughput compared
to the optimal solution with no constraint, which isW . Note
that (C−C′) is the optimal solution to Problem (12) and it is
the difference of contribution to throughput between keeping
observations withG(o) ≥ H(o) andf∗(o) = 0 in O = 0 and
moving them toO = 1.

max
∑

G(oi)≥H(oi),i=1,··· ,l

(G(oi)−H(oi))xi

s.t.
∑

G(oi)≥H(oi),i=1,··· ,l

H(oi)xi ≤ U − α× γ (12)

xi ∈ {0, 1} for all i,

where observations withG(o) ≥ H(o) are labeled in an
arbitrary order. Next, we will show that the constraint of
Problem (12) and that of Problem (B) are equivalent. As shown
in Figure 3, we have

A+B′ ≥ α× γ ⇔ A+B′ − α× γ ≥ 0

⇔ A+B′ + C′ − α× γ ≥ C′ ⇔ C′ ≤ U − α× γ. (13)

Problem (12) is a Knapsack Problem [23]. By the fol-
lowing greedy approach, at least1/2 of (C − C′) can be
achieved [23]: choosing observations withG(oi) ≥ H(oi)

Algorithm 3 Pseudo-Polynomial Algorithm to Find the Joint Distribution

of (log G(o)
H(o)

, logH(o))

Input:N , P i
f , P i

m for all i

Output:C(N, j, j′) for all j, j′

1: yi ← round(log
1−P i

f

P i
m

, r)× 10r for all i

2: zi ← round(log
P i
f

1−P i
m
, r)× 10r for all i

3: λi ← round(logP i
m, r)× 10r for all i

4: µi ← round(log (1− P i
m), r)× 10r for all i

5: M ←
N∑

i=1
max {yi, zi}, m←

N∑

i=1
min {yi, zi}

6: M ′ ← max {max
i

λi,max
i

µi}, m′ ←
N∑

i=1
min {λi, µi}

7: C(i, j, j′)← 0 for all i, j, j′, C(1, y1, λ1)← 1, C(1, z1, µ1)← 1
8: for i = 1 to N − 1 do
9: for j = m to M do

10: for j′ = m′ to M ′ do C(i + 1, j, j′) = C(i, j − yi+1, j
′ −

λi+1) + C(i, j − zi+1, j
′ − µi+1)

from the highestG(oi)−H(oi)
H(oi)

to the lowest until (12) is
violated, which is exactly what we do in Algorithm 2 since
G(oi)−H(oi)

H(oi)
≥

G(oj)−H(oi)
H(oj)

if and only if G(oi)
H(oi)

≥
G(oj)
H(oj)

.
Hence,APX = U + 1/2(C − C′) holds. SinceU > 0, we
always haveAPX/OPT > 1/2 for Problem (B).

So far, we have shown that the greedy approximation algo-
rithm (Algorithm 2) exists for Problem (B) with an approxi-
mation factor strictly greater than1/2. WhenU ≫ C − C′,
this factor could be arbitrarily close to1.

D. Pseudo-Polynomial Implementation

In Lines 3, 6, 9 and 12 of Algorithm 2, exponential
number of observations are involved in the worst case due
to its combinatorial nature. We design a pseudo-polynomial
time algorithm by means of dynamic programming for the
implementation. The running time of a pseudo-polynomial
time algorithm is polynomial in the numeric value of the
input, which is exponential in the length of them assuming
they are rational numbers [23]. For simplicity, we assume
(1−Tc)π0 = γ in Algorithm 3, which can though be extended
to general cases without the assumption easily.

In Algorithm 3, dynamic programming is applied to cal-
culate the joint distribution oflog G(o)

H(o) and logH(o), which

counts the number of observations with the samelog G(o)
H(o) and

the samelogH(o). Note that this algorithm does not require
future information - only the collection of all sensing results
from SUs in the current time slot is required. Lines3, 6,
9 and 12 of Algorithm 2 can be calculated based on these
counts.round(a, r) roundsa to r decimal places. We use
round(a, r) × 10r to scale and round a reala to an integer.
The rounding error will be discussed in the simulation.M
andm specify the maximum and minimum contribution an
observationo can have tolog G(o)

H(o) respectively, whileM ′ and
m′ specify the maximum and minimum contribution an obser-
vationo can have tologH(o) respectively.C(N, j, j′) records
the number of observations withlog G(o)

H(o) (after rounding)
equal toj andlogH(o) (after rounding) equal toj′. Boundary
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conditions are set in Line7. Lines 8-10 use iterations to
find C(i, j, j′) for all i = 1, · · · , N , m ≤ j ≤ M and
m′ ≤ j′ ≤ M ′. The recursive function in Line10 matches
the fact that when the0 observation from SUi+1 is added to
observations from SU1 to i, log G(o)

H(o) is added byyi+1 and
logH(o) is added byλi+1; on the other hand, when the1
observation from SUi+ 1 is added to observations from SU
1 to i, log G(o)

H(o) is added byzi+1 and logH(o) is added by
µi+1. Note that Line10 may encounterC(i, j, j′) beyond the
boundaries ofj or j′, the value of which will be treated as0.
The time complexity isO(N(M −m)(M ′ −m′)), which is
pseudo-polynomial.

After the C(N, j, j′) distribution is found, Lines3, 6, 9
and12 of Algorithm 2 can be calculated accordingly, the time
complexity of which is dominated byO(N(M − m)(M ′ −
m′)).

VI. SENSING SET IDENTIFICATION

In this section, we formulate a new problem where the SU-
BS is free to choose any subset ofS as the sensing set and
maximizes the expected throughput of the system. We define
d as the homogeneous reporting delay of the sensing results
from an SU to the SU-BS, and̃d as the miscellaneous delay
which covers all the processing required after the collection
of sensing results at the SU-BS inTc. No matter how many
SUs are chosen in the sensing set, we always allocate the
length of Tc as the control slot. Thus, the control overhead
is still a constant in this section. Two cases are considered:
Nd + d̃ ≤ Tc, where all SUs are allowed in the sensing set
(Section VI-A); Nd + d̃ ≥ Tc, where at mostk = ⌊Tc−d̃

d
⌋

SUs are allowed in the sensing set (Section VI-B). We show
that the system throughput is monotonic over the number of
SUs chosen inS0 in Proposition 6.1. The hardness of the
constrained problem withNd+ d̃ ≥ Tc is unknown and there
is no efficient algorithm proposed for this type of problem so
far.

A. Nd+ d̃ ≤ Tc

Without the constraint of the number of SUs inS0, we will
show that the full set gives the most information. First, we
define

P (oS0 |B = 0) =
∏

i∈S0,oi=1

P if
∏

j∈S0,oj=0

(1− P jf ), (14)

which is the probability of a particular observation vectoro
S0

whereS0 is the sensing set occurring givenB = 0, and

P (oS0 |B = 1) =
∏

i∈S0,oi=1

(1 − P im)
∏

j∈S0,oj=0

P jm, (15)

which is the probability of a particular observation vectoro
S0

whereS0 is the sensing set occurring givenB = 1. Then we
formulate the problem as follows:

Problem (C):

max
f,S0

(1− Tc)π0
∑

f(o)=0

P (oS0 |B = 0)

+γ
∑

f(o)=1

P (oS0 |B = 1).

Proposition 6.1:Let F ∗(S0) be the optimal solution to
Problem (C) withS0 fixed. Then

F ∗({i1, · · · , ik, ik+1}) ≥ F ∗({i1, · · · , ik}). (16)

Proof: (sketch) By adding thek+1-th SU into the sensing
set, we can at least achieve the same system throughput as
before by ignoring its observation. The detailed proof can be
found in our technical report [16].

Using Proposition 6.1, we will prove it is the best choice
to choose the full set as the sensing set in Corollary 6.2.

Corollary 6.2: For all D ⊂ S, we haveF ∗(S) ≥ F ∗(D).
Proof: GivenD ⊂ S, we index the elements inS\D from

the smallest to the largest asl1, · · · , lm wherem = |S\D| and
0 ≤ m ≤ N . By Proposition 6.1, we haveF ∗(D) ≤ F ∗(D ∪
{l1}) ≤ F ∗(D ∪ {l1, l2}) ≤ · · · ≤ F ∗(D ∪ {l1, · · · , lm}) =
F ∗(S).

By Corollary 6.2, Problem (B) can be solved by first setting
S∗
0 = S and then applying Algorithm 1 to find the optimal

decision rule. Note that the time complexity is stillO(1).

B. Nd+ d̃ > Tc

We also investigate the case where the number of SUs inS0

is constrained, and state that it is unlikely to have an efficient
algorithm to find the optimal solution. By Proposition 6.1, the
problem can be formulated as follows:

Problem (D):

max
f,S0

(1− Tc)π0
∑

f(o)=0

P (oS0 |B = 0)

+γ
∑

f(o)=1

P (oS0 |B = 1)

s.t. |S0| = k,

wherek = ⌊Tc−d̃
d

⌋.
It has been shown in [15] that no non-exhaustive search

method over the subset ofS of sizek can always solve it op-
timally when observations are correlated. For the independent
observation problem such as Problem (D), however, it is not
clear whether exhaustive search would be necessary as shown
in [22]. Many heuristics such as Sequential Forward Selection
(SFS, [19]), Sequential Backward Selection (SBS, [19]) and
their variations [9] have been proposed to solve problems of
this type. Although we characterize the monotonic propertyof
system throughput over the number of SUs in the sensing set,
the complexity of the problem is not clear in the case when
Tc is small, compared toN .

VII. S IMULATIONS

In this section, simulation results are presented for the
performance of solutions proposed for Problems (A), (B),
(C) and (D). We first compare the performance of Bayesian
decision rule (Algorithm 1), majority, AND and OR policies
[25] in Section VII-A. Then the performance of the greedy
algorithm for Problem (B) (Algorithm 2), the random selection
and the optimal solution are presented in Section VII-B. The
performance of Sequential Forward Selection (SFS, [19]) is
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Fig. 4. Performance comparison of Bayesian decision rule, majority, AND
and OR.

compared with the optimal solution to Problem (D) in Sec-
tion VII-C. In all simulation studies, we consider a cognitive
radio network withN = 10, Tc = 0.2, π0 = 0.4, andγ = 2.
For each parameter setting, we generate30 groups ofP im’s
andP if ’s randomly, which represents the random geographical
locations of SUs in a CRN.

A. Performance of Bayesian Decision rule

Algorithm 1, the Bayesian decision rule based algorithm,
has been proven to be optimal in Section IV. In Figure 4,
we demonstrate the increase from majority, AND, OR rules
in terms of system throughput, which is the objective function
value of Problem (A). In majority rule, the decision is1 only
when the majority of the SUs sense an active PU; in AND
rule, the decision is1 only when all SUs sense an active PU;
in OR rule, the decision is1 if any of the SUs senses an
active PU. We varyγ, the average PU throughput, andN ,
the number of SUs, respectively. Among all four algorithms,
Bayesian decision rule strictly outperforms the other three.
Among them, the OR rule is better then AND and majority
rules since the PU transmission is better protected by the OR
rule. OR rule is too conservative to guarantee SU transmission.

B. Performance of Greedy Algorithm

Greedy algorithm (Algorithm 2) can achieve strictly greater
than1/2 of the optimal solution to Problem (B), as shown in
Section V. We compare its performance with that of random
selection. Random selection is also based on Bayesian decision
rule, which means Algorithm 1 is first executed; after that,
observations withG(o) ≥ H(o) are randomly selected to
put in O = 1 until the feasibility is satisfied. Thus the main
difference between greedy algorithm and random selection lies
in the selection criterion of observations withG(o) ≥ H(o)
after the initial assignment based on Bayesian decision rule.

In addition, we setα = 0.8, andr = 2. We vary parameters
such asγ, the average PU throughput,α, the PU throughput
constraint,N , the number of SUs, andr, the decimal places
kept in Algorithm 3 in Figures 5 and 6 respectively. To show
the approximation factor of our algorithm accurately, two
boundary cases are excluded in the result presentation where
both greedy algorithm and random selection will give the
optimal solution: 1) Bayesian decision rule gives the optimal
solution; 2) It is optimal to put all observations inO = 1.
Hence, we only show their performance when at least one but
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Fig. 6. Performance comparison of greedy algorithm over different r’s.

not all observations withG(o) ≥ H(o) have to be moved to
O = 1. The average case and worst case performances are
calculated based on the results after the exclusion.

In Figure 5(a), the approximation factors of greedy algo-
rithm and random selection over the optimal solution are com-
pared over different values ofγ, the average PU throughput
in the system. With a higherγ, the factor decreases gradually
in both average and worst cases of Algorithm 2 and it is
the same with random selection although it fluctuates a bit
due to the random selection. Greedy algorithm outperforms
random selection in both average and worst cases. Potentially,
the Bayesian decision rule assigns more SUs toO = 1
compared to a lowerγ case. Thus the initial assignment is
closer to α, the PU throughput constraint. Since we only
consider cases where Bayesian decision rule is not optimal,
both algorithms tend to have worse performance when the
initial assignment approachesα because it gets more sensitive
to a wrong observation selection.

In Figure 5(b), we varyα, the PU throughput constraint,
and compare the performance of greedy algorithm and random
selection. Greedy algorithm is obviously better than random
selection in both average and worst cases. Furthermore, the
worst performance of all random runs generated in greedy
algorithm wins over the average performance in random
selection. Approximation factors in both of them increase,
although it is minor in greedy algorithm. The increase can be
explained similarly to that in Figure 5(a): a higherα makes
the initial Bayesian decision assignment farther away from
it so that the performance is less sensitive to the choice of
observations. Due to its randomness, random selection may
have poor performance with the factor as low as about0.4 in
our simulation.

We test the performance of greedy algorithm with different
scales of the network. The number of SUs is varied from5
to 10. The approximation factors of both algorithms degrade
with more SUs. However, the factor is always far above1/2,
as proved in Theorem 5.3. The random selection drops below
1/2 in some cases as shown in the figure.

In Algorithm 3, we user as the decimal places kept for
the calculations. Although the rounding error is not strictly
characterized in Section III, we show the improvement of
performance with higherr, which means higher resolution,
in Figure 6. Note that the worst case performance is always
greater than1/2. The average performance increases from
about0.7 to about0.95, which is promising.



9

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

γ (PU throughput)

A
pr

ro
xi

m
at

io
n 

fa
ct

or

N = 10 Tc = 0.2 π0 = 0.4 α = 0.8 r = 2

 

 

Greedy average
Greedy worst case
Random average
Random worst case

(a) With differentγ’s.

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α (constraint)

A
pr

ro
xi

m
at

io
n 

fa
ct

or

N = 10 Tc = 0.2 π0 = 0.4 γ = 2 r = 2

 

 

Greedy average
Greedy worst case
Random average
Random worst case

(b) With differentα’s.

5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

N (number of SUs)

A
pr

ro
xi

m
at

io
n 

fa
ct

or

Tc = 0.2 π0 = 0.4 γ = 2 α = 0.8 r = 2

 

 

Greedy average
Greedy worst case
Random average
Random worst case

(c) With differentN ’s.
Fig. 5. Performance comparison of greedy algorithm and random selection.
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C. Performance of Sequential Forward Selection

With Nd+ d̃ ≤ Tc, Problem (C) is the same as Problem (A)
in that the optimal sensing set is the full set (Corollary 6.2).
Thus, we focus on the performance of SFS, a heuristic for
Problem (D) whose hardness is unknown so far. In SFS, we
start from an empty sensing set. In every step, only the SU
that is not yet chosen and has the largest marginal increase
to the system throughput is added to the set. The algorithm
stops when the size of the set reachesk. In Figure 7, we vary
k, the size of the sensing set, from1 to N and show the
approximation factor of SFS compared to the optimal solution
to Problem (D). Whenk increases, the performance of SFS
degrades untilk = N where all SUs are chosen in the sensing
set so that the order of selection does not matter. SFS on
average achieves at least0.8 of the optimal solution in our
simulation although the factor is lower than0.6 in one of the
worst cases.

VIII. CONCLUSION

In this paper, we propose a series of algorithms to maximize
the system throughput by cooperative sensing in cognitive
radio networks. Bayesian decision rule is applied to solve
the unconstrained optimization problem optimally. With the
PU throughput constraint, the new problem is shown to be
NP-hard and a greedy approximation algorithm with pseudo-
polynomial time complexity is proposed. More importantly,
the approximation factor is strictly greater than1/2. By
restricting the number of SUs chosen for sensing, a new
constrained optimization problem is formulated. We present a
structural property that more SUs lead to better performance.
However, the characterization of the combinatorial problem
remains elusive, which is our future work. Moreover, we are
also interested in investigating cases where the observations
of SUs are correlated.
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